Autumn Term 1									Autumn Term 2							
1	2	3	4		5		6		7		8		9	10		11
Practise subitising Recap the composition of 5	Focus on the composition of 6, 7, 8 and 9 as ' 5 and a bit'	Focus on the composition of 6, 7, 8 and 9 as ' 5 and a bit'	Compare sets of objects by matching Use the language of comparison: more than and fewer than		Recap the order of numbers to 10 using the 'staircase' pattern Identify numbers that are ' 1 more' or '1 less' and apply this to sets of objects		Focus on numbers that can be made with 'doubles' Recap that even numbers can be made with 2 equal parts		Focus on odd and even numbers See that even numbers can be composed of 2 s , and odd numbers have'an odd 1'		Focus on the composition of 6 Use the 2-by-3 'egg box' pattern and the rekenrek to find all the ways that 6 can be composed		Focus on the composition of 8 Use 2-by-4 grid and the rekenrek to find all the ways that 8 can be composed	Focus on the composition of 10 Use 2-by-5 grid (10frame) and the rekenrek to find all the ways that 10 can be composed		Focus on representations of ordinality Compare number tracks and number lines
Spring Term 1								Spring Term 2								
12	13	14		15		16		17		18		19		20		21
Focus on the composition of 7 Use the Hungarian number pattern and the rekenrek to find all the ways that 7 can be composed	Focus on the composition of 9 Focus on 3-by-3 grid and the rekenrek to find all the ways that 9 can be composed	Recap odd and even numbers by looking at their 'shape' Explore how odd numbers can be composed of 1 odd part and 1 even part, and even numbers can be composed of 2 odd parts or 2 even parts		Explore the concept of part-part-whole, seeing that numbers can be partitioned into parts Use the language of 'whole', 'split' and 'part' alongside the part-partwhole diagram		Continue to explore how numbers can be partitioned Introduce systematic approach to partitioning Represent ways to partition numbers in a 'number house'		Continue to explore systematic partitioning of numbers within 10 Connect 2 equal parts to doubling and halving		Practise applying knowledge of '1 more than' and ' 1 less than' a number in relation to odd/ even numbers Connect this to 'first, then, now' stories		Explore the effect of adding or subtracting 2 to odd/ even numbers Apply to 'first, then, now' stories		Apply knowledge of composition of even numbers to subtract from 6,8 and 10 , for both the partitioning and reduction structures of subtraction		Apply knowledge of composition of odd numbers to subtract from 5, 7 and 9 , for both the partitioning and reduction structures of subtraction

Summer Term 1					Summer Term 2				
22	23	24	25	26	27	28	29	30	31
Focus on the composition of 11 to 15 as '10 and a bit' See this represented on a rekenrek, a doubledecker bus, and in partpart-whole diagrams	Focus on the position of the numbers 11 to 15 on the number line Recap midpoint on a 0 to 10 number line and see that 10 is the midpoint on a 0 to 20 number line.	Read, write and interpret expressions and equations with the + and $=$ symbols to represent combining two sets (the aggregation structure of addition) Practise using knowledge of composition to identify the total/sum	Read, write and interpret expressions and equations with the + and = symbols to represent an increase in a set the augmentation structure of addition) Continue to use knowledge of composition to identify the total/ sum	Practise recalling the composition of the numbers 6, 7, 8 and 9 NB This week of material offers activities to develop automaticity and could be spread out over this half-term	Focus on odd and even numbers See that even numbers can be composed of $2 s$, and odd numbers have 'an odd 1'	Focus on the composition of 6 Use the 2-by-3 'egg box' pattern and the rekenrek to find all the ways that 6 can be composed	Focus on the composition of 8 Use 2-by-4 grid and the rekenrek to find all the ways that 8 can be composed	Focus on the composition of 10 Use 2-by-5 grid (10frame) and the rekenrek to find all the ways that 10 can be composed	Focus on representations of ordinality Compare number tracks and number lines

