Autumn Term 1

Autumn Term 2

1	2	3	4	5	6	7	8	9	10	11
Focus on the composition of 6, 7, 8 and 9 as ' 5 and a bit'	Compare numbers within 10 using language of comparison when comparing sets of objects and numbers Use the inequality and equals symbols in expressions and equations	Focus on odd/ even parts when even numbers are composed of 2 parts, including when 2 parts are equal (doubles)	Focus on the composition of 6 Identify missing addends and complete missing symbols expressions and equations using the equals or inequality symbol	Focus on the composition of 8 Use 2-by-4 grid and the rekenrek to find all the ways that 8 can be composed Apply to expressions and equations	Focus on the composition of 10 Use 2-by-5 grid (10frame) and the rekenrek to find all the ways that 10 can be composed Apply to expressions and equations	Focus on the composition of odd numbers including being made of 2 s and 1 more, or 1 odd part and 1 even part	Focus on the composition of 7 Use the Hungarian number pattern and the rekenrek to find all the ways that 7 can be composed Apply knowledge to expressions and equations	Focus on the composition of 9 Focus on 3-by-3 grid and the rekenrek to find all the ways that 9 can be composed Apply knowledge to expressions and equations	Focus on the composition of the numbers 11 to 19 as '10 and a bit' Apply to missing addend equations	Compare numbers within 20 Use proportional reasoning to identify the position of numbers within 20 in the linear number system, using midpoints of 5,10 and 15

Spring Term 1					Spring Term 2				
12	13	14	15	16	17	18	19	20	21
Focus on doubling numbers to 10 , using the ' 5 and a bit' structure to double 6, 7,8 and 9	Focus on the composition of 20 Use known facts within 10 to find missing parts of 20 when the known part is greater than 10	Apply knowledge of facts within 10 to addition and subtraction within 20 WITHIN the 10s boundary	Use knowledge of doubles to calculate near doubles See that near doubles are adjacent numbers See that the sum in a near double is odd	Develop understanding of near doubles Identify different strategies for near doubles, doubling the smaller addend and adding 1 or the larger addend and subtracting 1	Add 3 numbers using known facts identifying bonds of 10 and knowledge of the composition of 11 to 19 as ' 10 and a bit'	Add 2 numbers by 'bridging through 10 '	Consolidate understanding of adding 2 numbers by 'bridging through 10 ' Solve missing addend problems	Subtract by 'bridging through 10'	Consolidate understanding of subtracting by 'bridging through 10^{\prime}

Summer Term 1					Summer Term 2				
22	23	24	25	26	27	28	29	30	31
Connect the order of multiples of 10 to the order of numbers within 10 Use proportional reasoning to identify the position of numbers within 100 in the linear number system	Connect missing addend problems to subtraction problem	Subtract across the 10 boundary, by subtracting FROM 10 rather than bridging THROUGH 10	Practise subtracting within 20, selecting from a range of strategies See that all subtractions can be solved by thinking of how a number is composed and identifying the missing part	Focus on the composition of 20 Use known facts within 10 to find missing part of 20 when the known part is less than 10	Use knowledge of composition to reason about expressions and equations and use the equals and inequality symbols in expressions and equations	Consolidate doubles and near doubles Introduce strategy of adding two adjacent odd numbers or two adjacent even numbers into a double	Consolidate understanding and develop fluency in transforming addition calculations involving two adjacent odd or two adjacent even numbers into a double	Develop fluency in bonds within 10 and apply this to calculations within and across the 10 -boundary using a range of optional activities	A range of 6 sessions providing optional activities to provide practice and opportunities for assessment

